OpenCL :: Exploring the 1st Dimension (سری ناقص) – سایر – 2 مه 2023

بیایید همچنین توجه داشته باشیم که اگر یک سازنده به طور کامل همکاری نمی کند، نتیجه دیگری جز 1/2*a**-کردن آن وجود ندارد. پس انصافا اینجا mq و chronos تقصیری نداره . بنابراین از این نظر باید آن را نیز به 0.5*a** آماده کنم. 😂

CLBufferRead(tangents_handle,tangents,0,0,items);

اکنون باید محاسبات را در هسته به این صورت تبدیل کنیم: مقدار را دریافت کنید، مقدار دیوانه‌واری را روی آن محاسبه کنید، ارزش بدهید.

بسیار خوب، پس ما باید معیار تقسیم را پیدا کنیم، بیایید تعدادی اعدادی را که 512، 1024، 2048 و غیره دوست دارد بریزیم و نتایج را ثبت کنیم.

آیا می توانیم در اینجا به نتیجه ای برسیم؟ ارزش است:

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=1.8908
...
GLOBAL.ID[255]=255 : LOCAL.ID[255]=255 : GROUP.ID[255]=0 : T[255]=0.0147
GLOBAL.ID[256]=256 : LOCAL.ID[256]=0 : GROUP.ID[256]=1 : T[256]=-1.5271
...
GLOBAL.ID[511]=511 : LOCAL.ID[511]=255 : GROUP.ID[511]=1 : T[511]=2.3339
GLOBAL.ID[512]=512 : LOCAL.ID[512]=0 : GROUP.ID[512]=2 : T[512]=-0.8512
...
GLOBAL.ID[767]=767 : LOCAL.ID[767]=255 : GROUP.ID[767]=2 : T[767]=-0.1783

حالا اگر 11 هسته را اجرا کنم و 300 میلی ثانیه پیدا کنم، در مقابل اگر 170 میلی ثانیه پیدا کنم، چیزی درست به من می گوید.

حالا بیایید 257 مورد را پرتاب کنیم!

اگر این نشان دهد که 1024 گروه کاری می توانند به طور همزمان کار کنند چه می شود زیرا این دستگاه دارای 1024 واحد محاسباتی است؟

و ما مانده ایم که نارنجک را در دست گرفته ایم تا بفهمیم خوشه انگور است یا نه.

ما همه کارهای آماده سازی کسل کننده و آزاردهنده OpenCl را انجام می دهیم، نحوه اجرای برنامه، زمانی که فراخوانی می شود، زمینه های هسته را بافر می کند و یک پارامتر برای تعداد آیتم ها یا پرتقال هایی که باید برای آزمایش پرتاب شوند، ارائه می دهیم.

این کد به نظر می رسد:

این آزمایش یک فضای “کار” یک بعدی را با دستورات اصلی mql5 OpenCL در دسترس استقرار می دهد.

GLOBAL.ID[99]=99 : LOCAL.ID[99]=99 : GROUP.ID[99]=0 : T[99]=0.0905

ما باید بریدگی قابل توجهی را در زمان اجرا کشف کنیم که نشان می‌دهد هسته‌ها در حال تعویض گروه‌ها هستند، و برای پیچیده‌تر کردن کارها، این باید همه‌کاره باشد، بنابراین اگر آن را اجرا کنید باید نشانه‌ای دریافت کنید که در مقایسه با نشانه‌های من می‌توانیم نتیجه‌گیری کنیم یا به آن نزدیک شویم. فعالیت در دستگاه
نه دستگاه من یا دستگاه شما، بلکه به طور کلی. (در صورت امکان)

بنابراین، چگونه می توانیم بگوییم که f* در حال وقوع است؟

#property version   "1.00"

int OnInit()
  {

  EventSetMillisecondTimer(33);

   return(INIT_SUCCEEDED);
  }

void OnDeinit(const int reason)
  {

   
  }
void OnTimer(){
  EventKillTimer();
  int ctx=CLContextCreate(CL_USE_GPU_DOUBLE_ONLY);
  if(ctx!=INVALID_HANDLE){
    string kernel="__kernel void memtests(__global int* global_id,"
                                         "__global int* local_id,"
                                         "__global int* group_id){"
                                         "global_id[get_global_id(0)]=get_global_id(0);"
                                         "local_id[get_global_id(0)]=get_local_id(0);"
                                         "group_id[get_global_id(0)]=get_group_id(0);}";
    string errors="";
    int prg=CLProgramCreate(ctx,kernel,errors);
    if(prg!=INVALID_HANDLE){
    ResetLastError();
    int ker=CLKernelCreate(prg,"memtests");
    if(ker!=INVALID_HANDLE){
    int items=2560;
    int global_ids[];ArrayResize(global_ids,items,0);
    ArrayFill(global_ids,0,items,0);
    int local_ids[];ArrayResize(local_ids,items,0);
    ArrayFill(local_ids,0,items,0);    
    int group_ids[];ArrayResize(group_ids,items,0);
    ArrayFill(group_ids,0,items,0);        
    int global_id_handle=CLBufferCreate(ctx,items*4,CL_MEM_WRITE_ONLY);
    int local_id_handle=CLBufferCreate(ctx,items*4,CL_MEM_WRITE_ONLY);
    int group_id_handle=CLBufferCreate(ctx,items*4,CL_MEM_WRITE_ONLY);
    CLSetKernelArgMem(ker,0,global_id_handle);
    CLSetKernelArgMem(ker,1,local_id_handle);
    CLSetKernelArgMem(ker,2,group_id_handle);
    uint offsets[]={0};
    uint works[]={items};
    CLExecute(ker,1,offsets,works);
    while(CLExecutionStatus(ker)!=CL_COMPLETE){Sleep(10);}
    Print("Kernel finished");
    CLBufferRead(global_id_handle,global_ids,0,0,items);
    CLBufferRead(local_id_handle,local_ids,0,0,items);
    CLBufferRead(group_id_handle,group_ids,0,0,items);
    
    int f=FileOpen("OCLlog.txt",FILE_WRITE|FILE_TXT);
    for(int i=0;i<items;i++){
       FileWriteString(f,"GLOBAL.ID["+IntegerToString(i)+"]="+IntegerToString(global_ids[i])+" : LOCAL.ID["+IntegerToString(i)+"]="+IntegerToString(local_ids[i])+" : GROUP.ID["+IntegerToString(i)+"]="+IntegerToString(group_ids[i])+"
");
       }
    FileClose(f);
    int kernel_local_mem_size=CLGetInfoInteger(ker,CL_KERNEL_LOCAL_MEM_SIZE);
    int kernel_private_mem_size=CLGetInfoInteger(ker,CL_KERNEL_PRIVATE_MEM_SIZE);
    int kernel_work_group_size=CLGetInfoInteger(ker,CL_KERNEL_WORK_GROUP_SIZE);
    Print("Kernel local mem ("+kernel_local_mem_size+")");
    Print("Kernel private mem ("+kernel_private_mem_size+")");
    Print("Kernel work group size ("+kernel_work_group_size+")");

    CLKernelFree(ker);
    CLBufferFree(global_id_handle);
    CLBufferFree(local_id_handle);
    CLBufferFree(group_id_handle);
    }else{Print("Cannot create kernel");}
    CLProgramFree(prg);
    }else{Alert(errors);}
    CLContextFree(ctx);
    }
  else{
    Print("Cannot create ctx");
    }
  }
void OnTick()
  {

   
  }

خوب بیایید آن را بنویسیم و همچنین اولین آزمایشی را انجام دهیم که 5 هسته را به طور همزمان و با داده های مختلف اجرا می کند!

حتی اگر 1 واحد محاسباتی را گزارش می دهد (این دستورات اطلاعاتی را نیز به آن اضافه می کنم تا بتوانید مقایسه کنید) و حتی اگر کیت ابزار cuda 192 هسته مختلف و 32 تاب را گزارش می دهد.

این فایل صادر شده است:

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=-0.7910
GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0 : T[1]=-0.7287
...
GLOBAL.ID[255]=255 : LOCAL.ID[255]=255 : GROUP.ID[255]=0 : T[255]=0.2203
GLOBAL.ID[256]=256 : LOCAL.ID[256]=0 : GROUP.ID[256]=1 : T[256]=1.4999
..
GLOBAL.ID[511]=511 : LOCAL.ID[511]=255 : GROUP.ID[511]=1 : T[511]=0.1762
GLOBAL.ID[512]=512 : LOCAL.ID[512]=0 : GROUP.ID[512]=2 : T[512]=-0.0072
...
GLOBAL.ID[767]=767 : LOCAL.ID[767]=255 : GROUP.ID[767]=2 : T[767]=-2.0688
GLOBAL.ID[768]=768 : LOCAL.ID[768]=0 : GROUP.ID[768]=3 : T[768]=-2.0622
...
GLOBAL.ID[1022]=1022 : LOCAL.ID[1022]=254 : GROUP.ID[1022]=3 : T[1022]=2.2044
GLOBAL.ID[1023]=1023 : LOCAL.ID[1023]=255 : GROUP.ID[1023]=3 : T[1023]=-0.6644

آیا ما به این موضوع اشتباه نزدیک شده ایم؟ آیا لازم نیست 1025 گروه کاری به صورت موازی اجرا شوند درست است؟

عالی . پس بیا بریم !

ابتدا بیایید یک آزمایش ساده ایجاد کنیم و امتحان کنیم و بسنجیم که GPU چه کاری انجام می دهد، یا اگر بخواهید، چگونه GPU حجم کار را بدون هیچ دستورالعملی تقسیم می کند.

int kernel_work_group_size=CLGetInfoInteger(ker,CL_KERNEL_WORK_GROUP_SIZE);

نه، هنوز یک گروه است، اگرچه gpu کمی تاخیر داشت.

و اگر این درست است، در مورد این مقدار در اینجا چطور؟

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0
GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0
GLOBAL.ID[2]=2 : LOCAL.ID[2]=2 : GROUP.ID[2]=0
GLOBAL.ID[3]=3 : LOCAL.ID[3]=3 : GROUP.ID[3]=0
...
GLOBAL.ID[96]=96 : LOCAL.ID[96]=96 : GROUP.ID[96]=0
GLOBAL.ID[97]=97 : LOCAL.ID[97]=97 : GROUP.ID[97]=0
GLOBAL.ID[98]=98 : LOCAL.ID[98]=98 : GROUP.ID[98]=0
GLOBAL.ID[99]=99 : LOCAL.ID[99]=99 : GROUP.ID[99]=0

اجازه بدید ببینم . این یک فایل a** بزرگ است … اما خوشبختانه ما فقط به ردیف آخر نیاز داریم.

    float tangents[];ArrayResize(tangents,items,0);
    float range=5.2;
    for(int i=0;i<ArraySize(tangents);i++){
       float r=(((float)MathRand())/((float)32767.0)*range)-2.6;
       tangents[i]=r;
       }   

بیایید فکر کنیم، چگونه می توانیم زمان لازم را اندازه گیری کنیم؟

درست ؟ من ممکن است اشتباه کنم

اینجا اولین چیزی است که کد می کنیم، آیا می توانیم چندین نمونه از یک هسته را اجرا کنیم؟ …

بنابراین از get_global_id(0) برای ذخیره همه شناسه ها استفاده می شود.

اجازه دهید کاری را که در اینجا انجام می‌دهیم تکرار کنم: می‌خواهیم تغییر «تغییر» را در عناصر پردازش «تصور کنیم»، یعنی لحظه‌ای که واحدهای شلوغ تخلیه می‌شوند و داده‌های جدید را به طور مؤثر دریافت می‌کنند، یا من فکر می‌کنم که تعداد پردازش‌ها را به ما می‌دهد. عناصر (من حدس می زنم برابر باشد

پس بیایید با پرتاب 100 مورد شروع کنیم.

خوب ما 1025 گروه کاری دریافت می کنیم … باشه

CL_DEVICE_MAX_WORK_GROUP_SIZE

بنابراین ما یک نشانگر شناور جهانی به آرگومان های هسته اضافه می کنیم

بنابراین اگر “معیار” خود تکرارهای بهینه را پیدا کند، تا زمانی که تکرارهایی که ارسال می‌کند در “زمان‌هایی” بزرگ‌تر از بازه زمانی باشد، وارد یک حلقه می‌شود.

بله، ما همچنین می توانیم اندازه 0 را ارسال کنیم و با افست بازی کنیم تا از کش gpu جلوگیری کنیم.

aaand (من 2 ساعت را در اینجا تلف کردم زیرا فراموش کردم بافر را دوباره بخوانم 🤣) بنابراین، فراموش نکنید که وقتی داده‌ها را می‌خواهید، بافر خواندن را فراخوانی کنید.

اگر 10 هسته را به طور همزمان برای اجرا ارسال کنم، به طور کلی 150 میلی ثانیه زمان اجرا دریافت می کنم، به این معنی که حداقل زمان ثبت شده من در آیتم های اطلاعات هسته که از حداکثر زمان ثبت شده کم می شود، 150 میلی ثانیه خواهد بود.

__global float* _tangent,

سپس زمان ها را خروجی می گیریم و تصمیم می گیریم که چگونه از آنجا ادامه دهیم

ما باید زمان اجرا را اندازه گیری کنیم، اما چه؟

خب بیایید بفهمیم

بنابراین می‌توانیم از این شاخص‌ها استفاده کنیم و اگر تعدادی از کارها را روی GPU بریزیم، ببینیم که گروه‌ها چگونه مرتب شده‌اند.

مقدار هسته ها را به خارج از بلوک های if منتقل می کنیم، 2 تایمر را در شروع و پایان ضربه می زنیم و تفاوت را چاپ می کنیم:

GLOBAL.ID[99]=99 : LOCAL.ID[99]=99 : GROUP.ID[99]=0 : T[99]=-2.4797

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=1.5756 GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0 : T[1]=-1.1957 GLOBAL.ID[2]=2 : LOCAL.ID[2]=2 : GROUP.ID[2]=0 : T[2]=0.6411 … GLOBAL.ID[198]=198 : LOCAL.ID[198]=198 : GROUP.ID[198]=0 : T[198]=0.5839 GLOBAL.ID[199]=199 : LOCAL.ID[199]=199 : GROUP.ID[199]=0 : T[199]=-1.5742

عالی، حالا 50 هسته را با بار مرده (بدون کش) انجام دهید

1024 : آها الان به 4 گروه تقسیم شد ! بنابراین حداکثر اندازه گروه برای این دستگاه 256 مورد است؟

اگر بخواهیم 1025 گروه کاری (برای این دستگاه) بگیریم، به 1025*256 آیتم نیاز داریم، یعنی 262400 مورد.

class kernel_info{
      public:
  int offset;
  int handle;
ulong start_microSeconds;
ulong end_microSeconds;
      kernel_info(void){reset();}
     ~kernel_info(void){reset();}
 void reset(){
      offset=-1;
      handle=INVALID_HANDLE;
      start_microSeconds=0;
      end_microSeconds=0;
      }
 void setup(int _hndl,ulong _start,int _offset){
      handle=_hndl;
      start_microSeconds=_start;
      offset=_offset;
      }
 void stop(ulong _end){
      end_microSeconds=_end;
      }
};

kernel_info KERNELS[];

int OnInit()
  {

  EventSetMillisecondTimer(33);

   return(INIT_SUCCEEDED);
  }

void OnDeinit(const int reason)
  {

   
  }
void OnTimer(){
  EventKillTimer();
  int ctx=CLContextCreate(CL_USE_GPU_DOUBLE_ONLY);
  if(ctx!=INVALID_HANDLE){
    string kernel="__kernel void bench(__global int* global_id,"
                                      "__global int* local_id,"
                                      "__global int* group_id,"
                                      "__global float* _tangent,"
                                      "int iterations){"
                                      "float sum=(float)0.0;"
                                      "float of=(float)_tangent[get_global_id(0)];"
                                      "for(int i=0;i<iterations;i++){"
                                      "sum+=((float)tanh(of-sum))/((float)iterations);"
                                      "}"
                                      "sum=(float)0.12345;"
                                      "_tangent[get_global_id(0)]=0.123;"
                                      "global_id[get_global_id(0)]=get_global_id(0);"
                                      "local_id[get_global_id(0)]=get_local_id(0);"
                                      "group_id[get_global_id(0)]=get_group_id(0);}";
    string errors="";
    int prg=CLProgramCreate(ctx,kernel,errors);
    if(prg!=INVALID_HANDLE){
    ResetLastError();
    
      int kernels_to_deploy=5;
    
      int iterations=1000;
      ArrayResize(KERNELS,kernels_to_deploy,0);
      bool deployed=true;
      for(int i=0;i<kernels_to_deploy;i++){
         KERNELS[i].handle=CLKernelCreate(prg,"bench");
         if(KERNELS[i].handle==INVALID_HANDLE){deployed=false;}
         }
      
      if(deployed){
      Print("Deployed all kernels!");
      for(int i=0;i<kernels_to_deploy;i++){
         if(KERNELS[i].handle!=INVALID_HANDLE){Print("Kernel ["+i+"] Valid");}
         else{Print("Kernel ["+i+"] InValid");}
         }     
      }else{
      Print("Cannot deploy all kernels!");
      for(int i=0;i<kernels_to_deploy;i++){
         if(KERNELS[i].handle!=INVALID_HANDLE){Print("Kernel ["+i+"] Valid");}
         else{Print("Kernel ["+i+"] InValid");}
         }
      }
    
      for(int i=0;i<kernels_to_deploy;i++){
         if(KERNELS[i].handle!=INVALID_HANDLE){
           CLKernelFree(KERNELS[i].handle);
           }
         }  
    CLProgramFree(prg);
    }else{Alert(errors);}
    CLContextFree(ctx);
    }
  else{
    Print("Cannot create ctx");
    }
  }

جالب است، اکنون باید با ارائه یک عدد تکرار به عنوان آرگومان، کار را کمی دشوارتر کنیم.
این محاسبه tanh را حلقه می کند و برای هر نتیجه ما tanh شناور / تکرار مماس را جمع می کنیم.
مرتب

در واقع اجازه دهید آن را در کد اضافه کنم و ببینم چه چیزی را برمی گرداند:

خروجی فایل به این شکل است (در بالا) و می بینید که به هیچ وجه بار کار را تقسیم نکرده است.

وظیفه کشف نحوه نگاشت حافظه محلی به گروه های کاری است.

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=-1.2919
GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0 : T[1]=-1.2212
...
GLOBAL.ID[127]=127 : LOCAL.ID[127]=127 : GROUP.ID[127]=0 : T[127]=-1.2222
GLOBAL.ID[128]=128 : LOCAL.ID[128]=128 : GROUP.ID[128]=0 : T[128]=1.9752
GLOBAL.ID[129]=129 : LOCAL.ID[129]=0 : GROUP.ID[129]=1 : T[129]=1.0197
...
GLOBAL.ID[255]=255 : LOCAL.ID[255]=126 : GROUP.ID[255]=1 : T[255]=1.9462
GLOBAL.ID[256]=256 : LOCAL.ID[256]=127 : GROUP.ID[256]=1 : T[256]=-1.9560
GLOBAL.ID[257]=257 : LOCAL.ID[257]=128 : GROUP.ID[257]=1 : T[257]=-0.9829

CLBufferFree(tangents_handle);

"int iterations){"
int iterations=100;
CLSetKernelArg(ker,4,iterations);
GLOBAL.ID[262399]=262399 : LOCAL.ID[262399]=255 : GROUP.ID[262399]=1024 : T[262399]=-0.1899

اجازه دهید توضیح دهم که فکر می کنم چه چیزی می تواند در اینجا اتفاق بیفتد:

بیایید دنبالش برویم حتی اگر شکست بخورد

معیار 2: برش زمان اجرا با اندازه گروه

    string kernel="__kernel void memtests(__global int* global_id,"
                                         "__global int* local_id,"
                                         "__global int* group_id){"
                                         "global_id[get_global_id(0)]=get_global_id(0);"
                                         "local_id[get_global_id(0)]=get_local_id(0);"
                                         "group_id[get_global_id(0)]=get_group_id(0);}";

بیایید تا 50 هسته را جک کنیم و زمان بین شروع و پایان تایمر را اندازه گیری کنیم. بدون انجام کار دیگری فقط 50 هسته را روی OpenCL نصب کنید.

سلام.

بنابراین ما برای معیار به چه چیزی نیاز خواهیم داشت؟

  1. آرایه هسته
  2. زمان شروع کرنل ها
  3. زمان پایان کرنل ها

هومممم یه مشکل دیگه هم هست ما می‌خواهیم «گلوگاه» GPU (یا دستگاه) را پیدا کنیم، اما OpenCL به ما اجازه نمی‌دهد این کار را انجام دهیم، زیرا خودش بار را کنترل می‌کند و ما چیزی نمی‌بینیم، بنابراین، چند هسته می‌توانیم ایجاد کنیم؟

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=-0.3564
GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0 : T[1]=2.3337
...
GLOBAL.ID[255]=255 : LOCAL.ID[255]=255 : GROUP.ID[255]=0 : T[255]=-2.4480
GLOBAL.ID[256]=256 : LOCAL.ID[256]=0 : GROUP.ID[256]=1 : T[256]=2.3620
...
GLOBAL.ID[510]=510 : LOCAL.ID[510]=254 : GROUP.ID[510]=1 : T[510]=-2.2709
GLOBAL.ID[511]=511 : LOCAL.ID[511]=255 : GROUP.ID[511]=1 : T[511]=-0.3056

بیایید 200 مورد را به آن بریزیم

در این مورد باید یک آرگومان در هسته اضافه کنیم، آرگومان را به هسته پیوند داده و مقدار را تنظیم کنیم:

هنوز شکافی وجود ندارد.

به ما اطلاع دهید از حداکثر موارد کاری که یک گروه کاری می تواند داشته باشد، زیرا، این همان کاری است که gpu زمانی که هیچ دستورالعملی ندارد، به تنهایی انجام می دهد؟

اما به قسمت 2 ادامه می یابد


منبع: https://www.mql5.com/en/blogs/post/752650

خوب البته ما می توانیم این همان چیزی است که برای آن است 😅

بار کار را به دو گروه تقسیم کرد!

سپس یک آرایه دوتایی در برنامه خود ایجاد می کنیم و آن را با مقادیر تصادفی در محدوده -2.6 تا 2.6 پر می کنیم.

aa و در انتها بافر رایگان اضافه کنید در غیر این صورت به نظر می رسد که در حال ذخیره (هوشمندانه) مقادیر است

اکنون 50 هسته را انجام دهید

int device_max_work_group_size=CLGetInfoInteger(ctx,CL_DEVICE_MAX_WORK_GROUP_SIZE);

خوب، حالا بیایید تکرارها را به 1000 برگردانیم و آزمایش را با مقادیر مختلف شروع کنیم.

1024 می گوید . 1024 گروه کاری یا 1024 مورد در گروه های کاری در مجموع؟

بیایید 10 میلیون تکرار 100 مورد، که ممکن است برای دقت شناور مشکل ساز باشد؟ اجازه بدید ببینم

کاری که این کار انجام می دهد این است که 3 آرایه حافظه جهانی عدد صحیح global_id , local_id , group_id را دریافت می کند و آنها را با شاخص مربوطه در موقعیت جهانی پر می کند. به عنوان مثال اگر 10 پرتقال در 2 کیسه داشته باشیم، شاخص کیسه را به شاخص آرایه خطی پرتقال ها اختصاص می دهیم.
ما می گوییم، نارنجی[0] در Bag0 و نارنجی است[9] در Bag1 است، ما از شاخص پرتقال در کیسه استفاده نمی کنیم (نارنجی[0] در Bag0 و نارنجی است[4] در Bag1 است) که چیزی در مورد نحوه چیدمان پرتقال ها به ما نمی گوید!

خوب حالا باید یک پرانتز غول پیکر باز کنیم و متأسفانه کار دیگری انجام دهیم.
معیار کنونی از این نظر مشکل دارد که از حافظه زیاد استفاده می کند.
اگر می‌خواهیم «قطع» هسته‌ها ظاهر شود، باید از «محاسبات» بیشتر از «واکشی» استفاده کنیم.
این تست همچنین زمانی اجرا می‌شود که بخواهیم دائماً اجرا شود، مشکل دوم ما اگر قطع باشد
نزدیک به راه اندازی مجدد حلقه ما متوجه آن نخواهیم شد!

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=0.7702
GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0 : T[1]=0.0282
GLOBAL.ID[2]=2 : LOCAL.ID[2]=2 : GROUP.ID[2]=0 : T[2]=0.9934
GLOBAL.ID[3]=3 : LOCAL.ID[3]=3 : GROUP.ID[3]=0 : T[3]=2.2652
GLOBAL.ID[4]=4 : LOCAL.ID[4]=4 : GROUP.ID[4]=0 : T[4]=-2.2026
...
GLOBAL.ID[96]=96 : LOCAL.ID[96]=96 : GROUP.ID[96]=0 : T[96]=-1.7437
GLOBAL.ID[97]=97 : LOCAL.ID[97]=97 : GROUP.ID[97]=0 : T[97]=-1.1011
GLOBAL.ID[98]=98 : LOCAL.ID[98]=98 : GROUP.ID[98]=0 : T[98]=0.4125
GLOBAL.ID[99]=99 : LOCAL.ID[99]=99 : GROUP.ID[99]=0 : T[99]=1.8560

                                         "float sum=(float)0.0;"
                                         "float of=(float)_tangent[get_global_id(0)];"
                                         "for(int i=0;i<iterations;i++){"
                                         "sum+=((float)tanh(of-sum))/((float)iterations);"
                                         "}"
                                         "_tangent[get_global_id(0)]=sum;"
  • مجموع را روی 0.0 تنظیم کنید.
  • مقدار اولیه را در متغیر mem خصوصی “of” تنظیم کنید
  • حلقه به تکرار
  • tanh “از” منهای مجموع تا کنون تقسیم بر تکرارها را جمع کنید.
  • آرایه مماس را پر کنید

بیایید محدوده ای از مقادیر را از 2.6- تا 2.6 ایجاد کنیم و از آن بخواهیم tanh آن x برابر را محاسبه کند و همچنین آرایه را در لحظه تغییر دهد.

خوب، معیار این خواهد بود:

  1. یک هسته “سنگین” calcs را بارگذاری کنید
  2. یک آزمون بزرگ ایجاد کنید
  3. موارد را یکی یکی به صورت ناهمزمان بفرستید ???….

ساده است و بیایید تکرارهای اولیه را روی 100 تنظیم کنیم و دوباره کد را اجرا کنیم تا ببینیم آیا هنوز 1 گروه تولید می شود یا خیر. (و همچنین نتیجه حاصل را برای اشکال زدایی چاپ کنیم)

سپس یک دسته بافر برای openCL ایجاد کنید، در این حالت حافظه خواندن نوشتن است نه فقط نوشتن. (خواندن نوشتن برای دستگاه نه میزبان (ما))

2023.05.02 20:12:15.704 blog_kernel_times_benchmark (USDJPY,H1) Time to load and unload 50 kernels = 78ms

اجازه بدید ببینم ! این جالبه ! 😍

int tangents_handle=CLBufferCreate(ctx,items*4,CL_MEM_READ_WRITE);

این احساس می شود:

  • انویدیا نصف ** آن را ویرایش کرد
  • OpenCL را نصف ** آن را ویرایش کنید
  • Mql5 نصف آن را انجام داد

(منطقی است که بیشتر به گروه ها تقسیم نشوید زیرا حلقه تکرارها انبوهی از محاسبات است که نیازی به حافظه ندارد، بنابراین برای اجرای در یک عنصر پردازشی بهینه است، اما همچنین فکر نمی کنم بتواند در داخل تقسیم شود. اگر اشتباه نکنم، آیتم کار و هسته یک نمونه کار هستند. ادامه می دهیم.)

CLSetKernelArgMem(ker,3,tangents_handle);

این هسته است، فراخوانی های شاخص دارای بعد مشخص شده در پرانتز هستند

OpenCL دارای اندیس های داخلی است که می توان آنها را از هسته فراخوانی کرد و آنها را ارائه می کند

  • شناسه جهانی مورد کار، برای یک بعد
  • شناسه محلی مورد کار، برای یک بعد
  • شناسه گروه مورد کار، برای یک بعد

همچنین این کد 3 مقدار را چاپ می کند:

  1. اندازه حافظه محلی هسته (من 1 میگیرم)
  2. اندازه حافظه خصوصی هسته (0 می گیرم)
  3. اندازه گروه کاری هسته (من 256 می گیرم)

خیر , مشکلی وجود ندارد 3 گروه 256 موردی هر کدام . باشه

512: دوباره به دو گروه تقسیم می شود:

اما ما نصف چیزهایی را دوست نداریم که یک** یا بدون** انجام می دهیم!

کدهای کمتر یا کمتر تایپ کردن با تایپ بیشتر، علاوه بر این، شکایت کردن شما را ثروتمند می کند تنها در صورتی که وکیل یا سیاستمدار باشید… 😂

و سپس بافر را به آرگومان های هسته پیوند دهید

2023.05.02 20:15:35.724 blog_kernel_times_benchmark (USDJPY,H1) Deployed all kernels!
2023.05.02 20:15:35.746 blog_kernel_times_benchmark (USDJPY,H1) Time to load and unload 5000 kernels = 94ms

و دوباره آن را برای 5 هسته اجرا می کنیم:

  long timer_ended=GetTickCount();
  
    long diff=timer_ended-timer_started;
    if(timer_ended<timer_started){diff=UINT_MAX-timer_started+timer_ended;}
    Print("Time to load and unload "+IntegerToString(kernels_to_deploy)+" kernels = "+IntegerToString(diff)+"ms");
    ExpertRemove();

اولین چیزی که به ذهن می رسد این است که “آیا مکانیزم تصمیم گیری داخلی دارد؟” برای هر دو دستور wrapper و mql5 بومی زمانی که دستورات OpenCL را فراخوانی می کنند. چگونه خواهیم دانست؟ بیایید هسته را کمی «سنگین‌تر» کنیم و همچنین یک مقدار شناور استخراج کنیم.

258 چطور؟ ما اولین تقسیم خود را دریافت می کنیم!

و محاسبات هسته، بیایید فهرست OpenCL را جستجو کنیم

حالا شما به چیزی که من فکر می کنم فکر می کنید: “چرا این را در سطوح پایین تر، nvidia یا amd حل نکنیم”؟ و احتمالاً پاسخ این است که “ما این همه پول R+D را خرج نکردیم تا Khronos بیرون بیاید و از آن سود ببریم”، یا، برای ساده کردن آن، احتمالا “از Cuda استفاده کنید، یا، از Hpi استفاده کنید”.

چی ؟

هنوز یک گروه

بیایید به آن مقدار 768 بدهیم، آیا مقادیر حتی گروهی را دوست دارد؟ (به خاطر تعداد هسته هایش؟)

2023.05.02 20:11:41.352 blog_kernel_times_benchmark (USDJPY,H1) Time to load and unload 5 kernels = 94ms

(هر چند ممکن است تاخیر چاپی وجود داشته باشد:D پس فقط مواردی را که مستقر نشده اند چاپ کنید! و وضعیت)

عالی بدون تاخیر وجود دارد. بیایید عملیات انبوه 5000 هسته را انجام دهیم. اگر 78 میلی‌ثانیه دریافت کنیم، چراغ سبز برای معیار دریافت می‌کنیم.

MQ یک بار که فکر می کنم راهی برای اجرای یک هسته ارائه کرده است. بیایید سریع تأیید کنیم.

میلی‌ثانیه‌ای که برای اجرای یک واحد کاری طول می‌کشد باید قدر معینی بزرگ‌تر از فاصله تایمر باشد تا بتوانیم آن را اندازه‌گیری کنیم!

نمی‌دانم معنایی دارد یا نه، اما این چیزی است که سعی می‌کنم پیدا کنم.

ما یک واحد محاسباتی با 10 هسته فرعی پردازشی داریم (عناصر پردازش)

اگرچه من کمی تاخیر را تشخیص می دهم.

آیا معیار می تواند 1000 هسته اجرای آنها را همزمان فراخوانی کند (به خوبی در یک حلقه) و سپس ما شروع به دریافت می کنیم
زمان کامل شدن یک کرنل طول می کشد؟ بنظر معقولانه میاد . بنابراین برای آزمایش open cl یک cl باز می سازیم. یک CL باز کوچک 😂

2023.05.02 20:13:16.359 blog_kernel_times_benchmark (USDJPY,H1) Time to load and unload 50 kernels = 94ms

همچنین باید همیشه و در هر لحظه به خاطر داشته باشید که این ممکن است یک واکنش خاص این سخت افزار باشد، بنابراین باید انعطاف پذیری برای دیگران (شما) وجود داشته باشد تا خودتان آن را آزمایش کنید.

همچنین توجه داشته باشید که شناسه محلی چقدر راحت است و ایندکس را در هر گروه به ما می گوید!

پارامتر آیتم ها و صادرات شاخص هایی که دریافت کرده ایم به یک فایل برجسته شده است.

هنوز یک گروه

بسیار خوب به نظر من کار می کند و ما هنوز هیچ شکافی نداریم. بیایید تکرارها را به 10000 برسانیم اما موارد 100 باقی می مانند.

ما یک شرط داریم که باید برای تکرارها رعایت شود:

GLOBAL.ID[0]=0 : LOCAL.ID[0]=0 : GROUP.ID[0]=0 : T[0]=2.0035
GLOBAL.ID[1]=1 : LOCAL.ID[1]=1 : GROUP.ID[1]=0 : T[1]=-0.0069
GLOBAL.ID[2]=2 : LOCAL.ID[2]=2 : GROUP.ID[2]=0 : T[2]=-0.8145
GLOBAL.ID[3]=3 : LOCAL.ID[3]=3 : GROUP.ID[3]=0 : T[3]=1.7880
...
GLOBAL.ID[255]=255 : LOCAL.ID[255]=255 : GROUP.ID[255]=0 : T[255]=0.2042
GLOBAL.ID[256]=256 : LOCAL.ID[256]=256 : GROUP.ID[256]=0 : T[256]=1.7910

توسط رضا خانتاراج

رضا خانتاراج